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* Chile mining
* Mining industry situation
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Increased demand for metals by 2030

Coupled with rising urbanization rates, this will drive higher demand for industrial commodities
such as steel, zinc, and copper to build high density housing, new manufacturing plants and
connect cities with larger transport infrastructure networks.

As incomes rise, consumption of household electrical appliances, consumer electronics and
packaged food in these economies will grow, supporting increased aluminium demand.

The transition to zero emissions energy will accelerate in the next decade. This too will rely on
new metal-intensive electricity generation and transportation technologies such as renewable
energy, nuclear power and electric vehicles that will create higher demand for lithium, uranium,
copper, and nickel.

Ongoing innovation will see smaller, more powerful circuits and processors which rely on rare
earth elements, copper, and silver to enhance their performance.

Commodity demand Outlook 2030
Mineral Council of Australia



Metals, including Critical Raw Materials, are an ideal candidate for a
circular economy as they are eternally recyclable, and properly treated,
secondary metals do not face downcycling or quality issues. However, in
many cases, secondary resources are not sufficient to meet demand.

Electric vehicles contain around 60 kg
of cooper compared to a conventional
car which has around 8-22 kg. A
battery-powered bus can contain up to
369 kg.

‘ “Copper is the new oil”
L Jeff Currie
Goldman Sachs

B World Demand

World copper consumption
doubles every 25-30 years.




. Main Problems of Mining

* Decrease in ore grades (e.g. Cu: 1940 ~ 7-2%; 2000~ 1%; 2019~0.6; 2100 ~ 0.2)

* More complex minerals and ore composition changes.

* High power consumption

* Keeping efficiency (cost/ton, energy/ton, water/ton)
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. Typical Processes for metals
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. Typical Process for metals from brines ¢
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. New Process for metals from brines
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. New Process for
metals from
brines

Pumping of native brine

Re-injection of
lithium deprived
Lithium deprived spent brine brine.
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Other characteristics of the mining industry

QI] L Still a strong focus on end of pipe

O technologies.

Few examples of cleaner production
and industrial ecology.

Greater focus on the micro scale
research compared to other scales

Little attention to multiscale
integration.

Little attention to design and
C integration




(1970-1990) Pollution treatment through
end-of-pipe technology

Laguitton, D., Arsenic Removal From Gold-Mine
Waste Waters: Basic Chemistry of the Lime
Addition Method. CIM Bull. 69, 105—-109

Arsenic Removal from Mine and Process

Waters by Lime/Phosphate Precipitation: Pilot
Scale Demonstration, 2005

Petroleum

Montana Tech of The University of Montana, Canadian Ins
USA



In mineral processing there is still a strong focus
on pollution treatment through end-of-pipe

technology

2005 2ot

Arsenic Removal from Mine and Process Arsenic removal from hydrometallurgical waste

sulfuric acid via scorodite formation using siderite
(FeCO,) (also use hydrated lime), Chemical

Engineering Journal, 2021

Waters by Lime/Phosphate Precipitation: Pilot
Scale Demonstration, 2005
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Figure 1. Levels of length and time alongside the modeling and optimization tools analyzed in this
manuscript (CFD—computational fluid dynamics; RSM—response surface methodology; Al—artificial
intelligence; GSA—global sensitivity analysis).

°
From Trends in Modeling, Design, and Optimization of Multiphase Systems in Minerals Processing,

Cisternas et al., 2020.



51 % Nickel recovery, 78 % copper
recovery, and 38% of the Sulfur feed
finish in the tail (poor desulfurization)
Kevitsa Flotation Circuit (Finland).
Musuku et al. 2015

Inefficient process, opportunities
for process intensification,
process integration, control,
design and analysis
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. Molecular Modeling for selective collectors

L 1
IPETC IRETC IRAL.TC IRACTC IRECTC

Identification of selective thionocarbamates collectors (CuFeS2 versus FeS2) based on
Ab initio calculation methods, such as Hartree-Fock (HF) and density functional
theory (DFT).



A4
Computational fluid dynamics (CFD) modelling
* of flotation process (Fluidity)
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10% volume fraction of coal particles at superficial gas velocity of (a) 0.64, (b) . o . . . .
1.07, (c) 1.49, (d) 1.91, (e) 2.33, and (b) 2.76, cms~ ! (Sarhan et al., 2017a,b). Fig. 10. lA schematic view of cyclonic-static micro-bubble flotation column
(Yan et al., 2012).

Cyclonic flotation
unit

Although, in practice, design of flotation cells has largely been based on the practical experience and empirical
design approach, it is expected that use of physics-based modelling involving mechanisms of flotation kinetics and
multiphase hydrodynamics will provide better insight into the rigorous design of the equipment, removing the

need to design equipment with an extra safety margin, which can often lead to larger equipment than needed
(Wang et al., 2018).



Use of mineral processing simulators: (HSC

* Sim)
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Optimization-based desigh (GAMS)

What is the effect of the epistemic uncertainties of
stage recoveries in the design of flotation circuits?
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Optimal configurations for 30,000 d 02
cases of recovery for species 1
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And the stochastic uncertainty? Price & Feed grade?
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Planning and flexible circuits design can be more important than adjusting stage recoveries



Each plant generates and transports its own water
resources

Example. Use of seawater in minin;

Andes Mountains
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nitial conditions

Plant Integration

oogle Earth

Herrera-Leon et al., 2019
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®
Molecular modeling: standard software, e.g. Gaussian

Optimization: standard software, e.g. GAMS

General-purpose mineral processing and extractive metallurgy
simulators: METSIM- HSC Chemistry for windows.

Exam P I es Of PS E Specifig simulatgrs: -JKSimFIoat (Flotation circuits), JKSimMet
TOOIS in M P (comminution circuits).

gProms is utilized for brine processing

EDEM (DEM Solutions) is used for granular material simulation
(Discrete Element Modeling)

CFD simulation, Fluidity, ANSYS Fluents, Qfinsoft




7th International Computational Modelling Symposium ‘
(Computational Modelling '19) was organised by Minerals
o Confe rences Engineering International (MEI).
Computahonal Macelling ‘43 The specific areas included:

*Model development and computational techniques
*Modelling of minerals processing and materials handling
unit operations

*Optimisation of plant and circuit operation and design
*Experimental validation including novel experimental

F: techniques
— Discrete Element Modelling (DEM), Computational Fluid
R e s Wi e/l Sl TR Dynamics (CFD) and Finite Element Methods (FEM)



https://www.min-eng.com/who.html
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. Final comment

*The mining industry, and mineral processing in
particular, must face several challenges. PSE can help
meet these challenges by applying planning, process
control, process design, modeling, process integration,
process intensification, process optimization, among
others.
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